While the rise of artificial intelligence (AI) could revolutionize numerous sectors and unlock unprecedented economic opportunities, its energy intensity has raised serious environmental concerns.
In response, tech companies promote frugal AI practices and support research focused on reducing energy consumption, but this approach falls short of addressing the root causes of the industry’s growing demand for energy.
Developing, training and deploying large language models (LLMs) is an energy-intensive process that requires vast amounts of computational power. With the widespread adoption of AI leading to a surge in data centers’ electricity consumption, the International Energy Agency projects that AI-related energy demand would double by next year.
Data centers already account for 1 to 2 percent of global energy consumption — about the same as the entire airline industry. In Ireland, data centers accounted for 21 percent of total electricity consumption in 2023. As industries and citizens shift toward electrification to reduce greenhouse gas emissions, rising AI demand places enormous strain on power grids and the energy market.
Unsurprisingly, Ireland’s grid operator, EirGrid, has imposed a moratorium on new data center developments in Dublin until 2028. Countries such as Germany, Singapore and China have also imposed restrictions on new data center projects.
To mitigate the environmental impact of emerging technologies, the tech industry has begun to promote the concept of frugal AI, which involves raising awareness of AI’s carbon footprint and encouraging end users — academics and businesses — to select the most energy-efficient model for any given task.
However, while efforts to promote more conscious AI use are valuable, focusing solely on users’ behavior overlooks a critical fact: suppliers are the primary drivers of AI’s energy consumption.
Currently, factors like model architecture, data center efficiency and electricity-related emissions have the greatest impact on AI’s carbon footprint.
In addition, as technology evolves, individual users would have even less influence on its sustainability, especially as AI models become increasingly embedded within larger applications, making it harder for end users to discern which actions trigger resource-intensive processes.
These challenges are compounded by the rise of agentic AI — independent systems that collaborate to solve complex problems. While experts see this as the next big thing in AI development, such interactions require even more computational power than today’s most advanced LLMs, potentially exacerbating the technology’s environmental impact.
Moreover, shifting the responsibility for reducing AI’s carbon footprint to users is counterproductive, given the industry’s lack of transparency. Most cloud providers do not yet transparently disclose emissions data specifically related to generative AI, making it difficult to assess the environmental impact of their AI use.
A more effective approach would be for AI providers to provide consumers with detailed emissions data. Increased transparency would empower users to make informed decisions, while encouraging suppliers to develop more energy-efficient technologies.
With access to emissions data, consumers could compare AI applications and select the most energy-efficient model for a specific task. Businesses could also more easily choose a traditional information technology solution over an energy-intensive generative AI system if the overall impact is clear from the beginning. By working together, AI companies and consumers could balance AI’s potential benefits with its environmental costs.
To be sure, frugal AI might lead to some efficiency gains, but it does not address the core problem of AI’s insatiable energy demand. By providing greater transparency about energy consumption, sharing comprehensive emissions data and developing standardized metrics for AI models, companies could help clients optimize their carbon budgets and adopt more sustainable practices.
The automotive industry offers a useful model for increasing energy transparency in AI development. By labeling the energy efficiency of their vehicles, auto manufacturers allow buyers to make more sustainable choices. Generative AI providers could adopt a similar approach and establish standardized metrics to capture the environmental impact of their models.
One such metric could be electricity consumption per token, which quantifies the amount of energy required for an AI model to process a single unit of text.
Just as fuel-efficiency standards allow car buyers to compare different models and hold manufacturers accountable, businesses and individual users need reliable tools to evaluate the environmental impact of AI models before deploying them.
By introducing transparent metrics, technology companies could not only steer the industry toward more sustainable innovation, but also ensure that AI helps combat climate change instead of contributing to it.
Boris Ruf is Research Scientist Lead at AXA.
Copyright: Project Syndicate
The gutting of Voice of America (VOA) and Radio Free Asia (RFA) by US President Donald Trump’s administration poses a serious threat to the global voice of freedom, particularly for those living under authoritarian regimes such as China. The US — hailed as the model of liberal democracy — has the moral responsibility to uphold the values it champions. In undermining these institutions, the US risks diminishing its “soft power,” a pivotal pillar of its global influence. VOA Tibetan and RFA Tibetan played an enormous role in promoting the strong image of the US in and outside Tibet. On VOA Tibetan,
Sung Chien-liang (宋建樑), the leader of the Chinese Nationalist Party’s (KMT) efforts to recall Democratic Progressive Party (DPP) Legislator Lee Kun-cheng (李坤城), caused a national outrage and drew diplomatic condemnation on Tuesday after he arrived at the New Taipei City District Prosecutors’ Office dressed in a Nazi uniform. Sung performed a Nazi salute and carried a copy of Adolf Hitler’s Mein Kampf as he arrived to be questioned over allegations of signature forgery in the recall petition. The KMT’s response to the incident has shown a striking lack of contrition and decency. Rather than apologizing and distancing itself from Sung’s actions,
US President Trump weighed into the state of America’s semiconductor manufacturing when he declared, “They [Taiwan] stole it from us. They took it from us, and I don’t blame them. I give them credit.” At a prior White House event President Trump hosted TSMC chairman C.C. Wei (魏哲家), head of the world’s largest and most advanced chip manufacturer, to announce a commitment to invest US$100 billion in America. The president then shifted his previously critical rhetoric on Taiwan and put off tariffs on its chips. Now we learn that the Trump Administration is conducting a “trade investigation” on semiconductors which
By now, most of Taiwan has heard Taipei Mayor Chiang Wan-an’s (蔣萬安) threats to initiate a vote of no confidence against the Cabinet. His rationale is that the Democratic Progressive Party (DPP)-led government’s investigation into alleged signature forgery in the Chinese Nationalist Party’s (KMT) recall campaign constitutes “political persecution.” I sincerely hope he goes through with it. The opposition currently holds a majority in the Legislative Yuan, so the initiation of a no-confidence motion and its passage should be entirely within reach. If Chiang truly believes that the government is overreaching, abusing its power and targeting political opponents — then