The problem of long-term energy sources has been drifting toward crisis for decades. Indeed, the catastrophes in Japan might finally achieve what decades of conflict in the Middle East have not: compel governments to invest in the research required to develop viable energy alternatives.
The immediate political response to the Japanese disaster will be to make small readjustments among known energy sources, including wind and solar. But the current options that many governments wish to embrace will not do the job. Production of the materials used to capture and store solar electricity, for example, can cause just as much environmental damage as conventional fuels, and existing wind and solar technology cannot easily meet the needs of large populations.
Of course, fossil fuels, mainly coal and natural gas, remain important, but their extraction and use is tied to groundwater pollution and carbon-dioxide emissions, especially in North America and China. The tragedy in Japan reminds us that, though nuclear energy emits no carbon dioxide, it is toxic in other ways.
If there was ever a time for a massive investment in research into long-term energy sources, that time is now. We need something on the scale of the Manhattan Project (which created the atomic bomb), or the Apollo Program (which put a man on the moon).
Both initiatives succeeded in a short period of time and at a relatively low price. In current dollars, each cost about US$200 billion — a mere fraction of what the US has paid for the Iraq War and less than the cost implied by the rise in oil prices over the past year.
Both the Apollo Program and the Manhattan Project had unique characteristics. Each marshaled the sharpest minds from a range of countries to address one task. Tolerance for failure was slim in both initiatives, so they tended to rely on the previous generation of scientific insight, because the resulting technology was more trustworthy. Neither entailed a great scientific challenge, but rather a vast engineering problem. Although invention was required, existing scientific methods were used.
Unfortunately, governments now focus only on one aspect of this investment format, in which technology that is almost ready is funded. However, this results in endless efforts to make non-ideal methods less troublesome. We need a game changer, like the integrated circuit, radio, or electricity. Such a paradigm shift requires an Apollo-scale investment, but in basic science.
There are several examples of the kind of phenomena that, with the benefit of new insight, could lead to unexpected energy sources. Quite apart from daily sunlight, for instance, Earth is bombarded by all sorts of other radiation from outside our solar system. Some of this we understand, but most of the material in the universe, and the forces associated with it, are not well explained. There is most likely an exploitable galactic source of energy that is constant, unlimited and in our sky right now. Without basic research to help us understand these forces, their potential will elude us.
An even more mysterious effect occurs on Earth with living creatures. According to general laws of physics, everything tends to disorder — a process known as entropy. Less well understood is why some agents do the opposite, tending toward order and structure. Plants, for example, interact with their environment to produce locally ordered systems, resulting in the creation of wood (and other biomass). When we burn wood, we reverse the process, unraveling that order and producing energy. At this simple level, we understand how nature works.
But in more complex cases, in which living beings collaborate to build societies or create knowledge, our scientific models are inadequate. This has prompted some scientists to begin investigating new models of energy from the perspective of “intelligence and information,” in which order is equivalent to information. With such a fresh perspective on matter, new potentials could emerge.
For example, consider methane clathrate, an ice-like stone that in most cases is built in an ordered way by a complex collaboration of microbes. Global deposits of methane clathrate contain more than twice the amount of energy of all known fossil fuels, and it can burn cleanly. If not burned in a controlled way, the release of raw clathrates into the atmosphere would represent a global climate threat, and past massive releases have been catastrophic. However, a better understanding of biological “information flow” could help us use methane clathrate in ways that could actually counter global warming.
Solutions such as these have not been explored because they are not within obviously immediate reach, as the atomic bomb and the lunar landing were. So, perhaps a radically new approach to research is also needed. Given humanity’s common interest in new energy sources, it seems that the world’s brightest scientific minds should collaborate to identify them.
Such a project would flourish in a scientific establishment that is maturing, rather than frozen in its methods. Whereas Japan, the US and Europe are competent at research into what is almost known, the cutting-edge science is more likely to emerge in an economy hungry for resources and infrastructure, such as China. Rather than a single laboratory, such a program could be a distributed virtual enterprise, taking advantage of the sort of innovative industrial collaboration in which China currently excels.
We need fundamental breakthroughs in alternative energy sources, and soon. Getting them will probably require a large, collaborative effort focused on theoretical science. Changing our approach to research in this way might seem more difficult than using what we already have. But, as with our natural resources, we are running out of options.
H.T. Goranson is lead scientist at Sirius-Beta Corp and was a senior scientist with the US Defense Advanced Research Projects Agency.
COPYRIGHT: PROJECT SYNDICATE
Having lived through former British prime minister Boris Johnson’s tumultuous and scandal-ridden administration, the last place I had expected to come face-to-face with “Mr Brexit” was in a hotel ballroom in Taipei. Should I have been so surprised? Over the past few years, Taiwan has unfortunately become the destination of choice for washed-up Western politicians to turn up long after their political careers have ended, making grandiose speeches in exchange for extraordinarily large paychecks far exceeding the annual salary of all but the wealthiest of Taiwan’s business tycoons. Taiwan’s pursuit of bygone politicians with little to no influence in their home
In a recent essay, “How Taiwan Lost Trump,” a former adviser to US President Donald Trump, Christian Whiton, accuses Taiwan of diplomatic incompetence — claiming Taipei failed to reach out to Trump, botched trade negotiations and mishandled its defense posture. Whiton’s narrative overlooks a fundamental truth: Taiwan was never in a position to “win” Trump’s favor in the first place. The playing field was asymmetrical from the outset, dominated by a transactional US president on one side and the looming threat of Chinese coercion on the other. From the outset of his second term, which began in January, Trump reaffirmed his
It is difficult not to agree with a few points stated by Christian Whiton in his article, “How Taiwan Lost Trump,” and yet the main idea is flawed. I am a Polish journalist who considers Taiwan her second home. I am conservative, and I might disagree with some social changes being promoted in Taiwan right now, especially the push for progressiveness backed by leftists from the West — we need to clean up our mess before blaming the Taiwanese. However, I would never think that those issues should dominate the West’s judgement of Taiwan’s geopolitical importance. The question is not whether
In 2025, it is easy to believe that Taiwan has always played a central role in various assessments of global national interests. But that is a mistaken belief. Taiwan’s position in the world and the international support it presently enjoys are relatively new and remain highly vulnerable to challenges from China. In the early 2000s, the George W. Bush Administration had plans to elevate bilateral relations and to boost Taiwan’s defense. It designated Taiwan as a non-NATO ally, and in 2001 made available to Taiwan a significant package of arms to enhance the island’s defenses including the submarines it long sought.