Despite the growing importance of science in the modern world, science education remains a remote and minor issue for most people.
This is both short-sighted and hazardous. After all, science and technology are not only the primary drivers of growth in the modern economy; they are also increasingly central to many major public policy issues, most notably those surrounding climate change and healthcare.
To be sure, the need for more and better science education has not been entirely ignored. But little of this attention has been aimed at post-secondary science education, the only level for which there is data showing how to make substantial improvements without enormous costs. Moreover, it is doubtful that great progress can be made at the primary and secondary levels until a higher standard of science learning is set at the post-secondary level.
The conventional view is that there is little problem with post-secondary science education. Scientists and engineers are being produced at rates comparable or higher than in the past and, while few non-science students find their required science courses enjoyable or useful, that is considered to be inherent to the subject.
However, the past 20 years or so have witnessed the emergence of research on science education at the university level carried out by scientists in their respective disciplines. The results of this research, and the dramatically improved gains in learning and interest achieved in associated teaching experiments, show that there are tremendous opportunities to improve university science education.
Realizing these opportunities, however, will require a different pedagogical approach, one that treats science education as a science, with rigorous standards for teaching effectiveness. It also requires abandoning the longstanding and widespread assumption that understanding science means simply learning a requisite body of facts and problem-solving recipes, and that mastery of those facts is the sole qualification needed to be a science teacher.
Science education research clearly shows that a true understanding of science, as demonstrated by how it is practiced, is not merely about learning information. Rather, it is about developing a way of thinking about a discipline that reflects a particular perception of how "knowledge" is established, its extent and limitations, how it describes nature and how it can be usefully applied in a variety of contexts.
Developing such a way of thinking is a profoundly different experience from learning a set of facts, and requires very different teaching skills.
In many respects, science education today is similar to medicine during the mid-1800s, when a new level of scientific rigor confronted long-held beliefs and well-respected traditional medical practices. For example, bloodletting had been in use for thousands of years, with detailed theories explaining its effectiveness. And there was convincing evidence that bloodletting worked: Most people recovered from their illness after being treated, just as many students (though a smaller percentage) thrive in our traditional lecture-based university science courses and go on to become scientists.
Over the course of several decades, however, an enormous intellectual shift occurred in how people came to think about the practice of medicine. Rigorous scientific standards were adopted, a better understanding of the complexities of the human body was developed, and a higher standard of evidence for the efficacy of treatments was established. The fact that some patients survived bloodletting was no longer good enough.
While this shift led to far more effective medical treatments, it did not come quickly or naturally to people. Even today, a large number of people are willing to reject medical science in favor of home remedies supported only by an anecdote offered by a neighbor or relative.
There is little reason to think that the adoption of a more scientific approach to science education will be much easier. Yet it has begun, and completing it offers the hope of moving from the educational equivalent of bloodletting to vaccines and antibiotics. With continued research and effective implementation of new findings about science education, it will be possible to achieve far more meaningful science learning for all university students.
Giving students a deeper understanding of the world around them is inherently enriching. It will also enable them to make wiser decisions on critically important matters of public policy, and to be far more creative and effective members of the workforce.
Carl Wieman, a Nobel laureate, is director of the Carl Wieman Science Education Initiative at the University of British Columbia and distinguished professor of physics at the University of Colorado. Copyright: Project Syndicate
Taiwan has lost Trump. Or so a former State Department official and lobbyist would have us believe. Writing for online outlet Domino Theory in an article titled “How Taiwan lost Trump,” Christian Whiton provides a litany of reasons that the William Lai (賴清德) and Donald Trump administrations have supposedly fallen out — and it’s all Lai’s fault. Although many of Whiton’s claims are misleading or ill-informed, the article is helpfully, if unintentionally, revealing of a key aspect of the MAGA worldview. Whiton complains of the ruling Democratic Progressive Party’s “inability to understand and relate to the New Right in America.” Many
The Centers for Disease Control and Prevention (CDC) earlier this month raised its travel alert for China’s Guangdong Province to Level 2 “Alert,” advising travelers to take enhanced precautions amid a chikungunya outbreak in the region. More than 8,000 cases have been reported in the province since June. Chikungunya is caused by the chikungunya virus and transmitted to humans through bites from infected mosquitoes, most commonly Aedes aegypti and Aedes albopictus. These species thrive in warm, humid climates and are also major vectors for dengue, Zika and yellow fever. The disease is characterized by high fever and severe, often incapacitating joint pain.
In nature, there is a group of insects known as parasitoid wasps. Their reproductive process differs entirely from that of ordinary wasps — the female lays her eggs inside or on the bodies of other insects, and, once hatched, the larvae feed on the host’s body. The larvae do not kill the host insect immediately; instead, they carefully avoid vital organs, allowing the host to stay alive until the larvae are fully mature. That living reservoir strategy ensures a stable and fresh source of nutrients for the larvae as they grow. However, the host’s death becomes only a matter of time. The resemblance
Most countries are commemorating the 80th anniversary of the end of World War II with condemnations of militarism and imperialism, and commemoration of the global catastrophe wrought by the war. On the other hand, China is to hold a military parade. According to China’s state-run Xinhua news agency, Beijing is conducting the military parade in Tiananmen Square on Sept. 3 to “mark the 80th anniversary of the end of World War II and the victory of the Chinese People’s War of Resistance Against Japanese Aggression.” However, during World War II, the People’s Republic of China (PRC) had not yet been established. It