There was a flurry of press coverage when the Large Hadron Collider in Switzerland was turned on, and again when it was shut down by a technical problem shortly afterwards. The collider’s operation was a much-anticipated event in science, one that could confirm or undermine one of the most successful theories about how the universe is structured. The public attention that it has received is rare for scientific news, perhaps owing to concerns that something celestially dangerous is being cooked up in our backyard.
The lead-up coverage was accompanied by hype about the potential risks, so when the test did not seem to go as planned, it was natural to wonder if the fabric of space-time had been bruised. Some of the initial rumors about what could happen were extreme. One speculated that these new high energies, when combined with the specific way the particles would be broken, would annihilate us. In another scenario, the lab might create uncontrollable tiny black holes.
In yet another, the creation of a “stranglet” would spawn new and terrible levels of nuclear power.
There are possible risks when messing around with fundamental matter, but in this case, the shutdown was the result of a mundane gas leak. What makes this test interesting for scientists, rather than newsmakers, is unchanged, and will still be exciting when the collider starts up again.
Here is what is at stake. For a scientific theory to be accepted, it must: one, explain observable phenomena; two, be “elegant” in the sense that its truth and clarity are obvious; and three, predict what will happen when you do something you have never done before.
The purpose of the Large Hadron Collider is to create an unprecedented situation. If the predicted particle does not appear, a series of theoretical abstractions will be questioned — and become open to replacement by radically different alternatives.
It is not generally appreciated how much real-world impact a changed scientific model can have. For most people, the topics that excite physicists do not seem to affect daily life in the slightest. But there is a deeper chain of abstractions — the tools we use to think — at work here, one based on the way we perceive reality.
For example, consider how different the world was before the concept of “zero” was discovered. Zero is essential to bookkeeping and hence all modern commerce. And that is quite apart from the way we take for granted the idea of “nothing.” The concept simply did not exist in the West until the Catholic Church ended its prohibition on the notion in the 12th century, 1400 years after zero had been invented in the Arab World.
Similarly, what if theories using germs had not been proven? We wouldn’t think about information transfer or messages the same way. Or the concept of the force field, which enables the concept of influence? Freud’s original model of the mind, the successors of which since shaped how we think of ourselves, were inspired by Einstein’s theory of relativity. Powerful scientific abstractions eventually creep into the way we enjoy art and how we form our laws and articulate our ethics.
In the highly anticipated collider experiment, the theory in question is at the center of a controversy about what abstractions seem more fundamental in the universe.
One is based on number; the other is based on form. The first holds that the universe is fundamentally probabilistic, generally random but with an order to its randomness. The other posits that the universe is inherently geometric, and that geometric properties, such as symmetry, govern it. If the experiment finds the predicted particle, it will tilt the argument toward form.
Here’s what this could mean in the long run. When you just read the word “symmetry,” you probably thought about two balanced halves, or a reflection. We extend this simple notion through all of our reasoning about the world: man and woman, boss and employee, love and hate, left and right. It drives our ideas of politics, religion, and even the principles of truth underpinning our system of laws.
But what if you naturally dealt with symmetries of three? What if it were proven, through a particle collision, that a true balance required three sides instead of two?
The tests in the Hadron Collider may trigger this change, every bit as disruptive as an explosion.
Or perhaps it will be less dramatic, dawning in the mind of a clerk gazing out the window of a patent office. A different perception of reality has the power to change us — change the way we think — and it could come from anywhere.
H.T. Goranson is the lead scientist for Earl Research and was a senior scientist with the US Defense Advanced Research Projects Agency.
COPYRIGHT: PROJECT SYNDICATE
In their recent op-ed “Trump Should Rein In Taiwan” in Foreign Policy magazine, Christopher Chivvis and Stephen Wertheim argued that the US should pressure President William Lai (賴清德) to “tone it down” to de-escalate tensions in the Taiwan Strait — as if Taiwan’s words are more of a threat to peace than Beijing’s actions. It is an old argument dressed up in new concern: that Washington must rein in Taipei to avoid war. However, this narrative gets it backward. Taiwan is not the problem; China is. Calls for a so-called “grand bargain” with Beijing — where the US pressures Taiwan into concessions
The term “assassin’s mace” originates from Chinese folklore, describing a concealed weapon used by a weaker hero to defeat a stronger adversary with an unexpected strike. In more general military parlance, the concept refers to an asymmetric capability that targets a critical vulnerability of an adversary. China has found its modern equivalent of the assassin’s mace with its high-altitude electromagnetic pulse (HEMP) weapons, which are nuclear warheads detonated at a high altitude, emitting intense electromagnetic radiation capable of disabling and destroying electronics. An assassin’s mace weapon possesses two essential characteristics: strategic surprise and the ability to neutralize a core dependency.
Chinese President and Chinese Communist Party (CCP) Chairman Xi Jinping (習近平) said in a politburo speech late last month that his party must protect the “bottom line” to prevent systemic threats. The tone of his address was grave, revealing deep anxieties about China’s current state of affairs. Essentially, what he worries most about is systemic threats to China’s normal development as a country. The US-China trade war has turned white hot: China’s export orders have plummeted, Chinese firms and enterprises are shutting up shop, and local debt risks are mounting daily, causing China’s economy to flag externally and hemorrhage internally. China’s
During the “426 rally” organized by the Chinese Nationalist Party (KMT) and the Taiwan People’s Party under the slogan “fight green communism, resist dictatorship,” leaders from the two opposition parties framed it as a battle against an allegedly authoritarian administration led by President William Lai (賴清德). While criticism of the government can be a healthy expression of a vibrant, pluralistic society, and protests are quite common in Taiwan, the discourse of the 426 rally nonetheless betrayed troubling signs of collective amnesia. Specifically, the KMT, which imposed 38 years of martial law in Taiwan from 1949 to 1987, has never fully faced its