When coral scientist Zoe Richards left the Great Barrier Reef’s Lizard Island in late January, she was feeling optimistic.
Richards is a taxonomist. Since 2011 she has recorded and monitored 245 coral species at 14 locations around the island’s research station, about 270km north of Cairns, Australia.
In 2017, Richards saw “mass destruction of the reef.” Back-to-back mass bleaching in 2016 and 2017, and cyclones in 2014 and 2015, had wreaked havoc.
Illustration: Mountain People
However, in January she saw thousands of new colonies of fast-growing Acropora corals that had “claimed the space” left by dead and degraded corals.
In a three-year window without spiraling heat or churning cyclones, some corals were in an adolescent bloom — not mature enough to spawn, but getting close.
“It was an incredible recovery,” said Richards, a senior research fellow at Curtin University in Perth. “But I knew if it was hit again, it would be trouble — and that’s exactly what happened.”
Mass bleaching returned to Lizard Island this year — perhaps not as badly as in previous years — but enough, Richards said, to turn the clock back on the recovery she had seen.
This summer has delivered a third mass bleaching for the reef in just five years. The back-to-back bleaching of 2016 and 2017 was mostly confined to the northern and central sections.
Data from aerial surveys is still being analyzed, but the Great Barrier Reef Marine Park Authority has said preliminary results suggest that this year’s bleaching had a much broader footprint.
When bleaching is mild, corals can and do recover, although it can make them more susceptible to disease, but severe bleaching can kill corals.
Estimates are that the 2016 bleaching killed about 29 percent of the reef’s shallow water corals and the 2017 event took another 19 percent.
Some scientists are now concerned global heating may have reached a point where tropical reefs bleach almost every year.
What this means for the reef in the coming decades is an area of live research and debate among scientists.
CAN WE FIX IT?
Scientists the Guardian Australia spoke to say the reef’s fortunes hang on the answers to two questions.
The first is whether governments around the world will make deeper cuts to greenhouse gas emissions than they have already agreed and, if so, how close they will get to keeping global heating to 1.5?C.
A second is whether efforts to first identify and then deploy a swathe of potential measures that could reduce the impact of rising temperatures will be successful.
What seems clear is that without some human intervention, the magic of the world’s greatest coral reef system will be lost.
Peter Mumby, a professorial research fellow on coral reef ecology at the University of Queensland, is the chief scientist at the Great Barrier Reef Foundation — the once-small not-for-profit that was awarded a controversial AS$443 million (US$275.79 million at the current exchange rate) government grant in 2018.
He said this year’s bleaching “is giving us greater pause, given it seems we can see quite frequent coral bleaching events earlier than people had previously expected.”
Mumby said bleaching events have been “patchy,” and the fact that some areas have escaped “means there’s an opportunity for management.”
What keeps the reef functioning as a single ecosystem is the way each reef connects to another through the way corals reproduce. They all either spawn, or produce larvae, that can float in the water column and settle on nearby reefs.
Mumby and colleagues have identified about 100 reefs along the Great Barrier Reef that are well spread, well connected to other reefs by ocean currents and tend to experience cooler temperatures.
He said making sure those reefs stay as healthy as possible — in particular by managing outbreaks of the coral-eating crown of thorns starfish — could be crucial in keeping the wider reef viable.
The reef’s unrivalled size and diversity — almost 4,000 reefs, cays and islands stretching for more than 2,000km — gives it extra resilience, he said.
Climate change is still the reef’s biggest threat and society will need to focus on tackling it, “but there needs to be a way to adapt to how we manage reefs so that they can roll with the punches — we have to do both those things.”
The Australian Institute of Marine Sciences (AIMS) has produced an as-yet unpublished study, sent to the federal government, that reviews more than 160 different interventions that have been suggested for the reef, identifying about 40 that could be worth further study.
Lina Bay, a principal research scientist at AIMS in Cape Ferguson, Queensland, said one promising area of study is what is known as “assisted gene flow,” where the spawn of corals with better tolerance for heat could be captured and then dispersed.
“Not all corals are created equal,” she said. “Some have a higher stress tolerance than others. Over many years we’ve shown that the variation in bleaching tolerance is hereditable — it gets passed from parents to offspring.”
She said these differences can exist even among the same species, meaning those corals can be selectively grown in a lab setting to promote more heat tolerance.
AIMS scientist Neal Cantin has just finished a three-year experiment with one fast-growing coral species called Pocillopora acuta, which behaves like a weed by filling in the gaps when less hardy corals die off.
Starting with 90 parent specimens taken from three different parts of the Great Barrier Reef, Cantin and colleagues grew 7,500 offspring and then subjected them to rising levels of carbon dioxide and temperatures of up to 2°C warming. Even at high temperatures, some of these corals survived, and they were able to tolerate higher levels of heat as the experiment went on.
Having a street-fighting weedy coral like this is important, Cantin said.
Dead areas of coral reefs tend to get covered in algae, but a weedy coral that can compete with the algae can then make room for slower-growing corals to also grow, Cantin said.
“The whole goal of a lot of these interventions is to work with species that can be successful on their own. We won’t be able to work with 600 species of corals, but we could probably work with 20 that fill the functional roles of a healthy reef community,” he said.
“You can’t deny bleaching events are becoming more frequent and more severe and they’re impacting across a bigger area than before. We can just document that demise, or we can learn from it and have some corals for future generations,” he said.
That demise is clear and it happens at scale, and also in detail.
Richards has already seen evidence of likely local extinctions of some corals at Lizard Island. One is a spiralized plate coral — Acropora clathrate — that she has not been able to find for years.
“It’s these silent extinctions that go on,” she said.
“The entire reef is operating like one big meta population with sub-populations that are connected to each other. If you successively take out nodes in that population, sooner or later you will end up with parts that don’t connect. It will be fragmented into subsets that will continue to erode in terms of diversity. It’s degradation of the [coral] community at a very large scale,” she said.
BASICALLY NOTHING
Ove Hoegh-Guldberg, a professor of marine science at the University of Queensland, has done pioneering work on the study of coral bleaching going back to the mid-1980s.
He remembers Lizard Island as a “picture perfect” place to do research on corals in the late 1980s, when his research there found rising temperatures caused corals to lose their “symbionts” — the algae that lives in the coral and gives them much of their nutrients and color.
The Great Barrier Reef’s first major mass bleaching event happened in 1998. There was another in 2002, and again in 2016, 2017 and this year.
“We knew there was a temperature effect, and we knew that temperatures were going up. At the end of the 90s, I could put those two things together,” Hoegh-Guldberg said.
The year after the reef’s first mass bleaching, Hoegh-Guldberg took climate models to forecast that if greenhouse gas emissions kept growing then, by this year, “the average bleaching event is likely to be similar or greater than the 1998 event.”
As this year approached, the models showed reefs across the northern, central and southern regions would see between eight and 10 bleaching events per decade.
“I wished I’d been wrong” he said. “I think I said at the time that I’d have egg on my face if I was wrong. But there’s no egg on my face.”
Hoegh-Guldberg said manually replanting corals is uneconomic at scale, but there is merit in helping the dispersal of coral larvae, pointing to a technique being developed by a scientist at Southern Cross University that captures millions of larvae in floating pools.
However, he said the main game is keeping global heating down.
“Let’s say we get to 1.5C and then we can stabilize — that’s really the last call for reefs. Corals will come back and there will be winners and losers, but you’ll have a functional reef that supports fisheries and tourism,” he said.
The problem is that right now, government pledges under the Paris agreement are enough to raise temperatures by 3°C — not 1.5°C.
“At 2C all the reef-building corals have plummeted and instead you are looking at the dominance of other organisms like algae. At 3C you basically have nothing,” Hoegh-Guldberg said.
“I’m fearful that in the next 10 years we will see the loss of coral across the planet at phenomenal rates,” he said. “That’s what keeps me up at night.”
With escalating US-China competition and mutual distrust, the trend of supply chain “friend shoring” in the wake of the COVID-19 pandemic and the fragmentation of the world into rival geopolitical blocs, many analysts and policymakers worry the world is retreating into a new cold war — a world of trade bifurcation, protectionism and deglobalization. The world is in a new cold war, said Robin Niblett, former director of the London-based think tank Chatham House. Niblett said he sees the US and China slowly reaching a modus vivendi, but it might take time. The two great powers appear to be “reversing carefully
As China steps up a campaign to diplomatically isolate and squeeze Taiwan, it has become more imperative than ever that Taipei play a greater role internationally with the support of the democratic world. To help safeguard its autonomous status, Taiwan needs to go beyond bolstering its defenses with weapons like anti-ship and anti-aircraft missiles. With the help of its international backers, it must also expand its diplomatic footprint globally. But are Taiwan’s foreign friends willing to translate their rhetoric into action by helping Taipei carve out more international space for itself? Beating back China’s effort to turn Taiwan into an international pariah
Typhoon Krathon made landfall in southwestern Taiwan last week, bringing strong winds, heavy rain and flooding, cutting power to more than 170,000 homes and water supply to more than 400,000 homes, and leading to more than 600 injuries and four deaths. Due to the typhoon, schools and offices across the nation were ordered to close for two to four days, stirring up familiar controversies over whether local governments’ decisions to call typhoon days were appropriate. The typhoon’s center made landfall in Kaohsiung’s Siaogang District (小港) at noon on Thursday, but it weakened into a tropical depression early on Friday, and its structure
Taiwan is facing multiple economic challenges due to internal and external pressures. Internal challenges include energy transition, upgrading industries, a declining birthrate and an aging population. External challenges are technology competition between the US and China, international supply chain restructuring and global economic uncertainty. All of these issues complicate Taiwan’s economic situation. Taiwan’s reliance on fossil fuel imports not only threatens the stability of energy supply, but also goes against the global trend of carbon reduction. The government should continue to promote renewable energy sources such as wind and solar power, as well as energy storage technology, to diversify energy supply. It