Sun, Aug 28, 2011 - Page 9 News List

Fusion power — is it getting any closer?

For decades, scientists have been predicting that, one day, the same process that powers the sun will provide us with virtually unlimited cheap and clean electricity. Experts make the case for more money, while skeptics claim the technological barriers are insurmountable. Who is right?

By Leo Hickman  /  The Guardian, LONDON

Illustration: Kevin Hsu

A star is born. And, less than a second later, it dies. On a drab science park just outside the Oxfordshire village of Culham in southern England, some of the world’s leading physicists stare at a monitor to review a video of their wondrous, yet fleeting, creation.

“Not too bad. That was quite a clean one,” starmaker-in-chief Steve Cowley says.

Just a few meters away from his control room, a “mini star” not much larger than a family car has just burned, momentarily bright, at temperatures approaching 23 million degrees centigrade inside a 70-tonne steel vessel.

Cowley sips his coffee and says: “OK, when do we go again?”

Last year, when asked to name the most pressing scientific challenge facing humanity, Stephen Hawking and Brian Cox both gave the same answer: producing electricity from fusion energy. The prize, they said, is enormous: a near-limitless, pollution-free, cheap source of energy that would power human development for many centuries to come. Cox is so passionate about the urgent need for fusion power that he said it should be scientists such as Cowley who are revered in our culture — not soccer players or pop stars — because they are “literally going to save the world.”

It is a “moral duty” to commercialize this technology as fast as possible, he said.

Without it, our species will be in “very deep trouble indeed” by the end of this century.

If only it were that simple. Fusion energy — in essence, recreating and harnessing here on Earth the process that powers the sun — has been the goal of physicists around the world for more than half a century. And yet it is perpetually described as “30 years away.” No matter how much research is done and money is spent attempting to commercialize this “savior” technology, it always appears to be stuck at least a generation away.

Cowley hears and feels these frustrations every day. As the director of the Culham Centre for Fusion Energy, he has spent his working life trying to shorten this exasperating delay. Fusion energy is already a scientific challenge arguably more arduous than any other we face, but recent events have only piled on further pressure: international climate-change negotiations have stalled, targets to ramp up renewable energy production seem hopelessly unrealistic and the Fukushima Dai-ichi nuclear power plant disaster has cast a large shadow over the future of fusion’s nuclear cousin, fission energy, with both Germany and Italy stating that, owing to safety concerns, they now intend to turn their back on a source of energy that has been providing electricity since the 1950s.

However, today Cowley seems upbeat, chipper even. After an 18-month shutdown to retile the interior of the largest of the center’s two “tokamaks” — ring doughnut-shaped chambers where the fusion reaction takes place — he is bullish about the progress being made by the 1,000 scientists and engineers based at Culham.

“By 2014-15, we will be setting new records here. We hope to reach break-even point in five years. That will be a huge- -psychological moment,” he says.

Cowley is referring to the moment of parity when the amount of energy they extract from a tokamak equals the amount of energy they put into it. At present, the best-ever “shot” — as the scientists refer to each fusion reaction attempt — came in 1997 when, for just two seconds, the JET (Joint European Torus) tokamak at Culham achieved 16MW of fusion power from an input of 25MW. For fusion to be commercially viable, however, it will need to provide a near-constant tenfold power gain.

This story has been viewed 2895 times.
TOP top